Chemistry

Influence machine

Influence machine



We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

How an influenza machine works

In order for an electrical voltage to build up in the inductors of the induction machine, which ultimately discharges in the form of a lightning bolt, a small residual charge is required, which must be on at least one aluminum strip. Most of it is left over from the previous operation of the machine, otherwise it is quickly created by friction1,.2)

The total charge of this strip is therefore not neutral, but positive (lack of electrons) or negative (excess electrons). Without a residual charge on an aluminum strip on one of the two counter-rotating discs, the influenza machine will not work. The influence machine is therefore one of the "self-exciting" machines.

The following film explains how influenza machines work.3)


Influence machine

Influence machine, Device for the generation of high electrical voltages, which provides two movable insulated conductors with charge by means of influence, which are then connected to two charge carriers (Conductors). The two conductors are conductively connected to each other, brought into the field of a capacitor, influenced there and moved out separately. They then give part of their cargo to the two conductors. The process is repeated until the voltage between the conductors reaches the isolation limit (Multiplier method). The tape generator is a further development of the influenza machine.

Reader opinion

If you have any comments on the content of this article, you can inform the editors by e-mail. We read your letter, but we ask for your understanding that we cannot answer every one.

Staff Volume I and II

Silvia Barnert
Dr. Matthias Delbrück
Dr. Reinald ice cream
Natalie Fischer
Walter Greulich (editor)
Carsten Heinisch
Sonja Nagel
Dr. Gunnar Radons
MS (Optics) Lynn Schilling-Benz
Dr. Joachim Schüller

Christine Weber
Ulrich Kilian

The author's abbreviation is in square brackets, the number in round brackets is the subject area number, a list of subject areas can be found in the foreword.

Katja Bammel, Berlin [KB2] (A) (13)
Prof. Dr. W. Bauhofer, Hamburg (B) (20, 22)
Sabine Baumann, Heidelberg [SB] (A) (26)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Frankfurt [HB1] (A, B) (29)
Prof. Dr. Klaus Bethge, Frankfurt (B) (18)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Angela Burchard, Geneva [AB] (A) (20, 22)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Heidelberg [FE] (A) (27 Essay Biophysics)
Dr. Roger Erb, Kassel [RE1] (A) (33)
Dr. Angelika Fallert-Müller, Groß-Zimmer [AFM] (A) (16, 26)
Dr. Andreas Faulstich, Oberkochen [AF4] (A) (Essay Adaptive Optics)
Prof. Dr. Rudolf Feile, Darmstadt (B) (20, 22)
Stephan Fichtner, Dossenheim [SF] (A) (31)
Dr. Thomas Filk, Freiburg [TF3] (A) (10, 15)
Natalie Fischer, Dossenheim [NF] (A) (32)
Prof. Dr. Klaus Fredenhagen, Hamburg [KF2] (A) (Essay Algebraic Quantum Field Theory)
Thomas Fuhrmann, Heidelberg [TF1] (A) (14)
Christian Fulda, Heidelberg [CF] (A) (07)
Frank Gabler, Frankfurt [FG1] (A) (22 essay data processing systems for future high-energy and heavy-ion experiments)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Michael Gerding, Kühlungsborn [MG2] (A) (13)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Göttingen [UG] (A) (13)
Prof. Dr. Michael Grodzicki, Salzburg [MG1] (A, B) (01, 16 essay density functional theory)
Prof. Dr. Hellmut Haberland, Freiburg [HH4] (A) (Essay Cluster Physics)
Dr. Andreas Heilmann, Chemnitz [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Jens Hoerner, Hanover [JH] (A) (20)
Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Dr. Ulrich Kilian, Hamburg [UK] (A) (19)
Thomas Kluge, Mainz [TK] (A) (20)
Achim Knoll, Strasbourg [AK1] (A) (20)
Andreas Kohlmann, Heidelberg [AK2] (A) (29)
Dr. Barbara Kopff, Heidelberg [BK2] (A) (26)
Dr. Bernd Krause, Karlsruhe [BK1] (A) (19)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Dr. Andreas Markwitz, Dresden [AM1] (A) (21)
Holger Mathiszik, Bensheim [HM3] (A) (29)
Mathias Mertens, Mainz [MM1] (A) (15)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Dr. Rudi Michalak, Warwick, UK [RM1] (A) (23)
Helmut Milde, Dresden [HM1] (A) (09 Essay Acoustics)
Guenter Milde, Dresden [GM1] (A) (12)
Maritha Milde, Dresden [MM2] (A) (12)
Dr. Christopher Monroe, Boulder, USA [CM] (A) (Essay Atom and Ion Traps)
Dr. Andreas Müller, Kiel [AM2] (A) (33 Essay Everyday Physics)
Dr. Nikolaus Nestle, Regensburg [NN] (A) (05)
Dr. Thomas Otto, Geneva [TO] (A) (06 Essay Analytical Mechanics)
Prof. Dr. Harry Paul, Berlin [HP] (A) (13)
Cand. Phys. Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Prof. Dr. Ulrich Platt, Heidelberg [UP] (A) (Essay Atmosphere)
Dr. Oliver Probst, Monterrey, Mexico [OP] (A) (30)
Dr. Roland Andreas Puntigam, Munich [RAP] (A) (14 Essay General Theory of Relativity)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Prof. Dr. Günter Radons, Stuttgart [GR2] (A) (11)
Oliver Rattunde, Freiburg [OR2] (A) (16 essay cluster physics)
Dr. Karl-Henning Rehren, Göttingen [KHR] (A) (Essay Algebraic Quantum Field Theory)
Ingrid Reiser, Manhattan, USA [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Prof. Dr. Hermann Rietschel, Karlsruhe [HR1] (A, B) (23)
Dr. Peter Oliver Roll, Mainz [OR1] (A, B) (04, 15 essay distributions)
Hans-Jörg Rutsch, Heidelberg [HJR] (A) (29)
Dr. Margit Sarstedt, Newcastle upon Tyne, UK [MS2] (A) (25)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Prof. Dr. Arthur Scharmann, Giessen (B) (06, 20)
Dr. Arne Schirrmacher, Munich [AS5] (A) (02)
Christina Schmitt, Freiburg [CS] (A) (16)
Cand. Phys. Jörg Schuler, Karlsruhe [JS1] (A) (06, 08)
Dr. Joachim Schüller, Mainz [JS2] (A) (10 essay analytical mechanics)
Prof. Dr. Heinz-Georg Schuster, Kiel [HGS] (A, B) (11 essay Chaos)
Richard Schwalbach, Mainz [RS2] (A) (17)
Prof. Dr. Klaus Stierstadt, Munich [KS] (A, B) (07, 20)
Cornelius Suchy, Brussels [CS2] (A) (20)
William J. Thompson, Chapel Hill, USA [WYD] (A) (Essay Computers in Physics)
Dr. Thomas Volkmann, Cologne [TV] (A) (20)
Dipl.-Geophys. Rolf vom Stein, Cologne [RVS] (A) (29)
Patrick Voss-de Haan, Mainz [PVDH] (A) (17)
Thomas Wagner, Heidelberg [TW2] (A) (29 essay atmosphere)
Manfred Weber, Frankfurt [MW1] (A) (28)
Markus Wenke, Heidelberg [MW3] (A) (15)
Prof. Dr. David Wineland, Boulder, USA [DW] (A) (Essay Atom and Ion Traps)
Dr. Harald Wirth, Saint Genis-Pouilly, F [HW1] (A) (20) Steffen Wolf, Freiburg [SW] (A) (16)
Dr. Michael Zillgitt, Frankfurt [MZ] (A) (02)
Prof. Dr. Helmut Zimmermann, Jena [HZ] (A) (32)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)

Dr. Ulrich Kilian (responsible)
Christine Weber

Priv.-Doz. Dr. Dieter Hoffmann, Berlin

The author's abbreviation is in square brackets, the number in round brackets is the subject area number, a list of subject areas can be found in the foreword.

Markus Aspelmeyer, Munich [MA1] (A) (20)
Dr. Katja Bammel, Cagliari, I [KB2] (A) (13)
Doz. Hans-Georg Bartel, Berlin [HGB] (A) (02)
Steffen Bauer, Karlsruhe [SB2] (A) (20, 22)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Frankfurt [HB1] (A, B) (29)
Dr. Werner Biberacher, Garching [WB] (B) (20)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Prof. Dr. Helmut Bokemeyer, Darmstadt [HB2] (A, B) (18)
Dr. Ulf Borgeest, Hamburg [UB2] (A) (Essay Quasars)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Jochen Büttner, Berlin [JB] (A) (02)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Karl Eberl, Stuttgart [KE] (A) (Essay Molecular Beam Epitaxy)
Dr. Dietrich Einzel, Garching [DE] (A) (20)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Vienna [FE] (A) (27)
Dr. Roger Erb, Kassel [RE1] (A) (33 essay Optical phenomena in the atmosphere)
Dr. Christian Eurich, Bremen [CE] (A) (Essay Neural Networks)
Dr. Angelika Fallert-Müller, Groß-Zimmer [AFM] (A) (16, 26)
Stephan Fichtner, Heidelberg [SF] (A) (31)
Dr. Thomas Filk, Freiburg [TF3] (A) (10, 15 essay percolation theory)
Natalie Fischer, Walldorf [NF] (A) (32)
Dr. Harald Fuchs, Münster [HF] (A) (Essay Scanning Probe Microscopy)
Dr. Thomas Fuhrmann, Mannheim [TF1] (A) (14)
Christian Fulda, Hanover [CF] (A) (07)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Michael Gerding, Kühlungsborn [MG2] (A) (13)
Prof. Dr. Gerd Graßhoff, Bern [GG] (A) (02)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Weinheim [UG] (A) (13)
Prof. Dr. Michael Grodzicki, Salzburg [MG1] (B) (01, 16)
Gunther Hadwich, Munich [GH] (A) (20)
Dr. Andreas Heilmann, Halle [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Christoph Heinze, Hamburg [CH3] (A) (29)
Dr. Marc Hemberger, Heidelberg [MH2] (A) (19)
Florian Herold, Munich [FH] (A) (20)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Priv.-Doz. Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Dr. Georg Hoffmann, Gif-sur-Yvette, FR [GH1] (A) (29)
Dr. Gert Jacobi, Hamburg [GJ] (B) (09)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Dr. Catherine Journet, Stuttgart [CJ] (A) (Essay nanotubes)
Prof. Dr. Josef Kallrath, Ludwigshafen, [JK] (A) (04 Essay Numerical Methods in Physics)
Priv.-Doz. Dr. Claus Kiefer, Freiburg [CK] (A) (14, 15 Essay Quantum Gravity)
Richard Kilian, Wiesbaden [RK3] (22)
Dr. Ulrich Kilian, Heidelberg [UK] (A) (19)
Dr. Uwe Klemradt, Munich [UK1] (A) (20, essay phase transitions and critical phenomena)
Dr. Achim Knoll, Karlsruhe [AK1] (A) (20)
Dr. Alexei Kojevnikov, College Park, USA [AK3] (A) (02)
Dr. Berndt Koslowski, Ulm [BK] (A) (Essay Surface and Interface Physics)
Dr. Bernd Krause, Munich [BK1] (A) (19)
Dr. Jens Kreisel, Grenoble [JK2] (A) (20)
Dr. Gero Kube, Mainz [GK] (A) (18)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Volker Lauff, Magdeburg [VL] (A) (04)
Priv.-Doz. Dr. Axel Lorke, Munich [AL] (A) (20)
Dr. Andreas Markwitz, Lower Hutt, NZ [AM1] (A) (21)
Holger Mathiszik, Celle [HM3] (A) (29)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Prof. Dr. Karl von Meyenn, Munich [KVM] (A) (02)
Dr. Rudi Michalak, Augsburg [RM1] (A) (23)
Helmut Milde, Dresden [HM1] (A) (09)
Günter Milde, Dresden [GM1] (A) (12)
Marita Milde, Dresden [MM2] (A) (12)
Dr. Andreas Müller, Kiel [AM2] (A) (33)
Dr. Nikolaus Nestle, Leipzig [NN] (A, B) (05, 20 essays molecular beam epitaxy, surface and interface physics and scanning probe microscopy)
Dr. Thomas Otto, Geneva [TO] (A) (06)
Dr. Ulrich Parlitz, Göttingen [UP1] (A) (11)
Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Dr. Oliver Probst, Monterrey, Mexico [OP] (A) (30)
Dr. Roland Andreas Puntigam, Munich [RAP] (A) (14)
Dr. Andrea Quintel, Stuttgart [AQ] (A) (Essay nanotubes)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Dr. Max Rauner, Weinheim [MR3] (A) (15 Essay Quantum Informatics)
Robert Raussendorf, Munich [RR1] (A) (19)
Ingrid Reiser, Manhattan, USA [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Dr. Peter Oliver Roll, Ingelheim [OR1] (A, B) (15 essay quantum mechanics and its interpretations)
Prof. Dr. Siegmar Roth, Stuttgart [SR] (A) (Essay nanotubes)
Hans-Jörg Rutsch, Walldorf [HJR] (A) (29)
Dr. Margit Sarstedt, Leuven, B [MS2] (A) (25)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Matthias Schemmel, Berlin [MS4] (A) (02)
Michael Schmid, Stuttgart [MS5] (A) (Essay nanotubes)
Dr. Martin Schön, Constance [MS] (A) (14)
Jörg Schuler, Taunusstein [JS1] (A) (06, 08)
Dr. Joachim Schüller, Dossenheim [JS2] (A) (10)
Richard Schwalbach, Mainz [RS2] (A) (17)
Prof. Dr. Paul Steinhardt, Princeton, USA [PS] (A) (Essay quasicrystals and quasi-unit cells)
Prof. Dr. Klaus Stierstadt, Munich [KS] (B)
Dr. Siegmund Stintzing, Munich [SS1] (A) (22)
Cornelius Suchy, Brussels [CS2] (A) (20)
Dr. Volker Theileis, Munich [VT] (A) (20)
Prof. Dr. Gerald 't Hooft, Utrecht, NL [GT2] (A) (essay renormalization)
Dr. Annette Vogt, Berlin [AV] (A) (02)
Dr. Thomas Volkmann, Cologne [TV] (A) (20)
Rolf vom Stein, Cologne [RVS] (A) (29)
Patrick Voss-de Haan, Mainz [PVDH] (A) (17)
Dr. Thomas Wagner, Heidelberg [TW2] (A) (29)
Dr. Hildegard Wasmuth-Fries, Ludwigshafen [HWF] (A) (26)
Manfred Weber, Frankfurt [MW1] (A) (28)
Priv.-Doz. Dr. Burghard Weiss, Lübeck [BW2] (A) (02)
Prof. Dr. Klaus Winter, Berlin [KW] (A) (essay neutrino physics)
Dr. Achim Wixforth, Munich [AW1] (A) (20)
Dr. Steffen Wolf, Berkeley, USA [SW] (A) (16)
Priv.-Doz. Dr. Jochen Wosnitza, Karlsruhe [JW] (A) (23 essay organic superconductors)
Priv.-Doz. Dr. Jörg Zegenhagen, Stuttgart [JZ3] (A) (21 essay surface reconstructions)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)
Dr. Werner Zwerger, Munich [WZ] (A) (20)

Dr. Ulrich Kilian (responsible)
Christine Weber

Priv.-Doz. Dr. Dieter Hoffmann, Berlin

The author's abbreviation is in square brackets, the number in round brackets is the subject area number, a list of subject areas can be found in the foreword.

Prof. Dr. Klaus Andres, Garching [KA] (A) (10)
Markus Aspelmeyer, Munich [MA1] (A) (20)
Dr. Katja Bammel, Cagliari, I [KB2] (A) (13)
Doz. Hans-Georg Bartel, Berlin [HGB] (A) (02)
Steffen Bauer, Karlsruhe [SB2] (A) (20, 22)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Frankfurt [HB1] (A, B) (29 Essay Seismology)
Dr. Werner Biberacher, Garching [WB] (B) (20)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Prof. Dr. Helmut Bokemeyer, Darmstadt [HB2] (A, B) (18)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Jochen Büttner, Berlin [JB] (A) (02)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Prof. Dr. Martin Dressel, Stuttgart (A) (essay spin density waves)
Dr. Michael Eckert, Munich [ME] (A) (02)
Dr. Dietrich Einzel, Garching (A) (essay superconductivity and superfluidity)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Vienna [FE] (A) (27)
Dr. Roger Erb, Kassel [RE1] (A) (33)
Dr. Angelika Fallert-Müller, Groß-Zimmer [AFM] (A) (16, 26)
Stephan Fichtner, Heidelberg [SF] (A) (31)
Dr. Thomas Filk, Freiburg [TF3] (A) (10, 15)
Natalie Fischer, Walldorf [NF] (A) (32)
Dr. Thomas Fuhrmann, Mannheim [TF1] (A) (14)
Christian Fulda, Hanover [CF] (A) (07)
Frank Gabler, Frankfurt [FG1] (A) (22)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Prof. Dr. Henning Genz, Karlsruhe [HG2] (A) (Essays Symmetry and Vacuum)
Dr. Michael Gerding, Potsdam [MG2] (A) (13)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Weinheim [UG] (A) (13)
Gunther Hadwich, Munich [GH] (A) (20)
Dr. Andreas Heilmann, Halle [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Marc Hemberger, Heidelberg [MH2] (A) (19)
Dr. Sascha Hilgenfeldt, Cambridge, USA (A) (essay sonoluminescence)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Priv.-Doz. Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Dr. Gert Jacobi, Hamburg [GJ] (B) (09)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Prof. Dr. Josef Kallrath, Ludwigshafen [JK] (A) (04)
Priv.-Doz. Dr. Claus Kiefer, Freiburg [CK] (A) (14, 15)
Richard Kilian, Wiesbaden [RK3] (22)
Dr. Ulrich Kilian, Heidelberg [UK] (A) (19)
Thomas Kluge, Jülich [TK] (A) (20)
Dr. Achim Knoll, Karlsruhe [AK1] (A) (20)
Dr. Alexei Kojevnikov, College Park, USA [AK3] (A) (02)
Dr. Bernd Krause, Munich [BK1] (A) (19)
Dr. Gero Kube, Mainz [GK] (A) (18)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Volker Lauff, Magdeburg [VL] (A) (04)
Dr. Anton Lerf, Garching [AL1] (A) (23)
Dr. Detlef Lohse, Twente, NL (A) (essay sonoluminescence)
Priv.-Doz. Dr. Axel Lorke, Munich [AL] (A) (20)
Prof. Dr. Jan Louis, Halle (A) (essay string theory)
Dr. Andreas Markwitz, Lower Hutt, NZ [AM1] (A) (21)
Holger Mathiszik, Celle [HM3] (A) (29)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Dr. Rudi Michalak, Dresden [RM1] (A) (23 essay low temperature physics)
Günter Milde, Dresden [GM1] (A) (12)
Helmut Milde, Dresden [HM1] (A) (09)
Marita Milde, Dresden [MM2] (A) (12)
Prof. Dr. Andreas Müller, Trier [AM2] (A) (33)
Prof. Dr. Karl Otto Münnich, Heidelberg (A) (Essay Environmental Physics)
Dr. Nikolaus Nestle, Leipzig [NN] (A, B) (05, 20)
Dr. Thomas Otto, Geneva [TO] (A) (06)
Priv.-Doz. Dr. Ulrich Parlitz, Göttingen [UP1] (A) (11)
Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Dr. Oliver Probst, Monterrey, Mexico [OP] (A) (30)
Dr. Roland Andreas Puntigam, Munich [RAP] (A) (14)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Dr. Max Rauner, Weinheim [MR3] (A) (15)
Robert Raussendorf, Munich [RR1] (A) (19)
Ingrid Reiser, Manhattan, USA [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Dr. Peter Oliver Roll, Ingelheim [OR1] (A, B) (15)
Hans-Jörg Rutsch, Walldorf [HJR] (A) (29)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Matthias Schemmel, Berlin [MS4] (A) (02)
Prof. Dr. Erhard Scholz, Wuppertal [ES] (A) (02)
Dr. Martin Schön, Konstanz [MS] (A) (14 essay special theory of relativity)
Dr. Erwin Schuberth, Garching [ES4] (A) (23)
Jörg Schuler, Taunusstein [JS1] (A) (06, 08)
Dr. Joachim Schüller, Dossenheim [JS2] (A) (10)
Richard Schwalbach, Mainz [RS2] (A) (17)
Prof. Dr. Klaus Stierstadt, Munich [KS] (B)
Dr. Siegmund Stintzing, Munich [SS1] (A) (22)
Dr. Berthold Suchan, Giessen [BS] (A) (Essay Philosophy of Science)
Cornelius Suchy, Brussels [CS2] (A) (20)
Dr. Volker Theileis, Munich [VT] (A) (20)
Prof. Dr. Stefan Theisen, Munich (A) (essay string theory)
Dr. Annette Vogt, Berlin [AV] (A) (02)
Dr. Thomas Volkmann, Cologne [TV] (A) (20)
Rolf vom Stein, Cologne [RVS] (A) (29)
Dr. Patrick Voss-de Haan, Mainz [PVDH] (A) (17)
Dr. Thomas Wagner, Heidelberg [TW2] (A) (29)
Manfred Weber, Frankfurt [MW1] (A) (28)
Dr. Martin Werner, Hamburg [MW] (A) (29)
Dr. Achim Wixforth, Munich [AW1] (A) (20)
Dr. Steffen Wolf, Berkeley, USA [SW] (A) (16)
Dr. Stefan L. Wolff, Munich [SW1] (A) (02)
Priv.-Doz. Dr. Jochen Wosnitza, Karlsruhe [JW] (A) (23)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)
Dr. Werner Zwerger, Munich [WZ] (A) (20)

Articles on the topic

Load.

Charge carrier

the electric charge is a property of the elementary particles that make up matter: they carry the negative charge Electrons, the positive charges are in the Atomic nuclei. To be more precise, they are Protons in the atomic nucleus (to be more precise, it is the quarks, but this should not become a page on elementary particle physics, so we do not go any deeper than the protons). In addition to the positively charged protons, there are also those in the atomic nucleus Neutrons, but as the name suggests, these are electrically neutral, i.e. uncharged. In an atom there are as many electrons as there are protons, the atom as a whole is therefore electrically neutral. The fact that some materials can still charge themselves or transport electrical current is due to the way in which the atoms are bonded to one another.

There are bonds in which the electrons are firmly in place. In diamond, for example, two electrons from two carbon atoms form a bond between the atoms, these bonds are called bonds Electron pair bonds or covalent bonds (Fig. 2 bottom left). Each atom has four such bonds to four neighboring atoms, creating a three-dimensional crystal lattice. The electrons are stuck in these bonds and cannot leave them, so diamond is not conductive.
In salt (sodium chloride), one electron is transferred completely from sodium to chlorine. This gives the sodium atom a positive charge and the chlorine atom a negative charge. Electrically charged atoms, i.e. atoms with one or more electrons too many or too few, are called Ions. Since opposite charges attract each other, sodium ions and chlorine ions also attract each other and form a crystal lattice in which ions of one charge are always surrounded by ions of the other charge. This is how the crystal holds together because of the electrical attraction. This type of bond is called Ionic bond (Fig. 2 top left). Here, too, the electrons are stuck, this time in their places with the atoms. Such materials are also not electrically conductive.

Electrical current is nothing more than charge carriers moving through a material. So when electrons or ions migrate, an electric current flows. An electric current can therefore only flow if the charge carriers are mobile. In solids, the atomic nuclei are so tight that only electrons can be used as moving charge carriers. Materials like diamond or salt do not conduct electricity because the electrons are not mobile (enough) here either.
It is different if you dissolve the salt crystal in water. In the solution, the ions are not firmly anchored as in the crystal, but can move (Fig. 2 top right). The salt solution is therefore very electrically conductive: The charge carriers here are the positive and negative ions.
But of course there are also solid bodies that conduct electricity - the classic is the copper cable. But others too Metals have a high conductivity. The reason again lies in the way the atoms are bonded. Metal atoms like to give up their outermost electrons. While the remaining positive ions form a crystal lattice, the released electrons form one Electron lake (Fig. 2, bottom right, the expression is not just a metaphor of mine, but quite common) around the atoms. The electrons in this lake are mobile enough that they can be set in motion by an electrical voltage. In metals, the charge carriers carrying current are electrons.

Another example in which ions act as charge carriers is provided by the following experiment. If you want to do the experiment, don't use a bowl that you use for food and then pour the vinegar away!
If you put a copper coin (here: 1 euro cent) in vinegar and next to it (without the two touching each other) a steel nail (Fig. 2 left), you will notice after about 1 day that the nail has a reddish sheen (Fig. 2b right). It has got a light copper coating. Metals dissolve in an acid - but they always go into solution as positive ions. The metal ions are transferred to the acid and the electrons remain in the metal. However, different metals tend to give off electrons to different degrees. The more noble the metal, the sooner it will accept electrons and the fewer electrons it will give off. This causes the copper ions dissolved in the vinegar to seize the opportunity and take over the remaining electrons on the steel nail. The copper ions turn back into metallic copper, which is deposited as a layer on the nail. The iron ions remain in solution - which is why the euro cent coin does not have an iron coating.

So copper ions migrate from the coin to the nail. This means that an electric current flows, carried by the positive ions. In fact, you can build a voltage source with two electrodes made of different metals, a so-called galvanic cell. The material that goes into solution more easily forms the negative electrode; the material that prefers to accept electrons, the positive one. If you then make sure that it is not the ions that balance the charge via the solution, but that the electrons left behind flow from the negative electrode to the positive electrode via a wire, you can use this current. This is how batteries and accumulators work.

So & ldquoBlack-White & ldquo, nature is usually not built up - between conductive and non-conductive there are several gradations of more or less conductive - when the electrons are not so one hundred percent firmly in the bonds, but by supplying more or less energy in Movement can be set.


Influence machine according to Wimshurst

We only supply companies, institutions and educational facilities. No sales to private individuals.

Please note: To comply with EU regulation 1272/2008 CLP, PHYWE does not sell any chemicals to the general public. We only accept orders from resellers, professional users and research, study and educational institutions.

  • We offer you to save your personal data in a password-protected customer account so that you do not have to enter your name and address again the next time you shop.
  • Your address data will be saved by registering.
  • You can delete your customer account at any time by contacting the operator of this page.
  • The next time you visit, all you need to call up your personal data is your e-mail and your password.

Pictures


Charges & electric field

The balls of an influence machine have a diameter of (2 <,> 00 , rm) and carry the opposite charge of (5 <,> 00 cdot <10 ^ <- 7 >> , < rm> ). Their distance from center to center is (10 ​​<,> 0 , rm).

Calculate the amount of electric field strength that one sphere creates at the center of the other sphere.

Calculate the amount of force with which both balls attract each other.

Calculate the amount of the electric field strength at the point on the surface of the sphere that is closest to the other sphere, taking into account the effect of both spherical charges.

Calculate the amount of the total field strength in the middle between the two spheres.

If the spheres are approached, a lightning flash will discharge at some point. This happens when the breakdown field strength of the air of approx. (10 ​​ cdot 10 ^ 6 , frac < rm> < rm , rm> ) has been reached or exceeded.

Calculate the distance up to which the balls have to approach each other before the rollover occurs.


The history of physics

Physics has its origin in the theories and individual studies of ancient scientists. At that time, physics was still part of philosophy, but already at that time it differed significantly in its systematics and implementation of philosophical methods.

It was not until the 13th century that the first philosophers and natural scientists demanded a greater independence of the knowledge of nature. The sixteenth century was decisive for physics through methodology. Here the foundations of the physical experimental standards were laid, which come very close to today's standards.

With this, physics is finally establishing itself as an independent natural science. The new methodology divided physics into two main areas: theoretical physics and experimental physics. In the 20th century, simulation and computer physics complemented physical methodology as a third extensive subject.

Today's physics is characterized by a fluid transition to chemistry, atomic and molecular physics and quantum chemistry. However, chemistry tends to focus on more complex structures (molecules), while physics usually researches fundamental matter. To distinguish it from biology, physics is often referred to as the science of inanimate nature, which, however, implies a limitation that does not exist in physics.


Electric charges

Electric charges come in two & bdquo versions & ldquo: positive Charges and negative Charges. Charges of the same name repel each other (Fig. 1), different charges attract each other. We don't have our own sensory organ to perceive electricity, but everyone knows the unpleasant feeling of the slight electric shock that gets you when you walk over certain carpets and then touch a door handle. Less uncomfortable, but under certain circumstances more annoying, is the flying of the hair after combing, which occurs especially in dry air.

& emsp Fig. 1 & brvbar repulsion of charges of the same name (video) & emsp Caption Two strips of aluminum foil are flexibly suspended from a paper clip. The paper clip itself hangs on a metal rod over a glass. (Glass has the advantage that it is transparent and you can watch the experiment. In principle, another, non-conductive material would work.) If you run a comb through your hair a few times, the comb charges itself electrically - electrical Charges pass from the hair to the comb, see Static electricity. If you then touch the metal rod or the paper clip directly with the comb, the charges from the comb overflow onto the metal (therefore the rod and paper clip must be electrically conductive). From there, the charges flow into the aluminum strips, which are also electrically conductive. Both strips are therefore charged with charges of the same sign and therefore repel each other afterwards: the stripes move apart. (Instead of the glass, no holder made of conductive material may be used, because then the charges would simply flow off via the metal rod and holder and disappear into the ground.) Caption end


Influence machine

Influence machine, Device for generating high electrical voltages, which provides two movable insulated conductors with charge by means of influence, which are then connected to two charge carriers (Conductors). The two conductors are conductively connected to each other, brought into the field of a capacitor, influenced there and moved out separately. They then give part of their cargo to the two conductors. The process is repeated until the voltage between the conductors reaches the isolation limit (Multiplier method). The tape generator is a further development of the influenza machine.

Reader opinion

If you have any comments on the content of this article, you can inform the editors by e-mail. We read your letter, but we ask for your understanding that we cannot answer every one.

Staff Volume I and II

Silvia Barnert
Dr. Matthias Delbrück
Dr. Reinald ice cream
Natalie Fischer
Walter Greulich (editor)
Carsten Heinisch
Sonja Nagel
Dr. Gunnar Radons
MS (Optics) Lynn Schilling-Benz
Dr. Joachim Schüller

Christine Weber
Ulrich Kilian

The author's abbreviation is in square brackets, the number in round brackets is the subject area number, a list of subject areas can be found in the foreword.

Katja Bammel, Berlin [KB2] (A) (13)
Prof. Dr. W. Bauhofer, Hamburg (B) (20, 22)
Sabine Baumann, Heidelberg [SB] (A) (26)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Frankfurt [HB1] (A, B) (29)
Prof. Dr. Klaus Bethge, Frankfurt (B) (18)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Angela Burchard, Geneva [AB] (A) (20, 22)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Heidelberg [FE] (A) (27 Essay Biophysics)
Dr. Roger Erb, Kassel [RE1] (A) (33)
Dr. Angelika Fallert-Müller, Groß-Zimmer [AFM] (A) (16, 26)
Dr. Andreas Faulstich, Oberkochen [AF4] (A) (Essay Adaptive Optics)
Prof. Dr. Rudolf Feile, Darmstadt (B) (20, 22)
Stephan Fichtner, Dossenheim [SF] (A) (31)
Dr. Thomas Filk, Freiburg [TF3] (A) (10, 15)
Natalie Fischer, Dossenheim [NF] (A) (32)
Prof. Dr. Klaus Fredenhagen, Hamburg [KF2] (A) (Essay Algebraic Quantum Field Theory)
Thomas Fuhrmann, Heidelberg [TF1] (A) (14)
Christian Fulda, Heidelberg [CF] (A) (07)
Frank Gabler, Frankfurt [FG1] (A) (22 essay data processing systems for future high-energy and heavy-ion experiments)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Michael Gerding, Kühlungsborn [MG2] (A) (13)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Göttingen [UG] (A) (13)
Prof. Dr. Michael Grodzicki, Salzburg [MG1] (A, B) (01, 16 essay density functional theory)
Prof. Dr. Hellmut Haberland, Freiburg [HH4] (A) (Essay Cluster Physics)
Dr. Andreas Heilmann, Chemnitz [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Jens Hoerner, Hanover [JH] (A) (20)
Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Dr. Ulrich Kilian, Hamburg [UK] (A) (19)
Thomas Kluge, Mainz [TK] (A) (20)
Achim Knoll, Strasbourg [AK1] (A) (20)
Andreas Kohlmann, Heidelberg [AK2] (A) (29)
Dr. Barbara Kopff, Heidelberg [BK2] (A) (26)
Dr. Bernd Krause, Karlsruhe [BK1] (A) (19)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Dr. Andreas Markwitz, Dresden [AM1] (A) (21)
Holger Mathiszik, Bensheim [HM3] (A) (29)
Mathias Mertens, Mainz [MM1] (A) (15)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Dr. Rudi Michalak, Warwick, UK [RM1] (A) (23)
Helmut Milde, Dresden [HM1] (A) (09 Essay Acoustics)
Guenter Milde, Dresden [GM1] (A) (12)
Maritha Milde, Dresden [MM2] (A) (12)
Dr. Christopher Monroe, Boulder, USA [CM] (A) (Essay Atom and Ion Traps)
Dr. Andreas Müller, Kiel [AM2] (A) (33 Essay Everyday Physics)
Dr. Nikolaus Nestle, Regensburg [NN] (A) (05)
Dr. Thomas Otto, Geneva [TO] (A) (06 Essay Analytical Mechanics)
Prof. Dr. Harry Paul, Berlin [HP] (A) (13)
Cand. Phys. Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Prof. Dr. Ulrich Platt, Heidelberg [UP] (A) (Essay Atmosphere)
Dr. Oliver Probst, Monterrey, Mexico [OP] (A) (30)
Dr. Roland Andreas Puntigam, Munich [RAP] (A) (14 Essay General Theory of Relativity)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Prof. Dr. Günter Radons, Stuttgart [GR2] (A) (11)
Oliver Rattunde, Freiburg [OR2] (A) (16 essay cluster physics)
Dr. Karl-Henning Rehren, Göttingen [KHR] (A) (Essay Algebraic Quantum Field Theory)
Ingrid Reiser, Manhattan, USA [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Prof. Dr. Hermann Rietschel, Karlsruhe [HR1] (A, B) (23)
Dr. Peter Oliver Roll, Mainz [OR1] (A, B) (04, 15 essay distributions)
Hans-Jörg Rutsch, Heidelberg [HJR] (A) (29)
Dr. Margit Sarstedt, Newcastle upon Tyne, UK [MS2] (A) (25)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Prof. Dr. Arthur Scharmann, Giessen (B) (06, 20)
Dr. Arne Schirrmacher, Munich [AS5] (A) (02)
Christina Schmitt, Freiburg [CS] (A) (16)
Cand. Phys. Jörg Schuler, Karlsruhe [JS1] (A) (06, 08)
Dr. Joachim Schüller, Mainz [JS2] (A) (10 essay analytical mechanics)
Prof. Dr. Heinz-Georg Schuster, Kiel [HGS] (A, B) (11 essay Chaos)
Richard Schwalbach, Mainz [RS2] (A) (17)
Prof. Dr. Klaus Stierstadt, Munich [KS] (A, B) (07, 20)
Cornelius Suchy, Brussels [CS2] (A) (20)
William J. Thompson, Chapel Hill, USA [WYD] (A) (Essay Computers in Physics)
Dr. Thomas Volkmann, Cologne [TV] (A) (20)
Dipl.-Geophys. Rolf vom Stein, Cologne [RVS] (A) (29)
Patrick Voss-de Haan, Mainz [PVDH] (A) (17)
Thomas Wagner, Heidelberg [TW2] (A) (29 essay atmosphere)
Manfred Weber, Frankfurt [MW1] (A) (28)
Markus Wenke, Heidelberg [MW3] (A) (15)
Prof. Dr. David Wineland, Boulder, USA [DW] (A) (Essay Atom and Ion Traps)
Dr. Harald Wirth, Saint Genis-Pouilly, F [HW1] (A) (20) Steffen Wolf, Freiburg [SW] (A) (16)
Dr. Michael Zillgitt, Frankfurt [MZ] (A) (02)
Prof. Dr. Helmut Zimmermann, Jena [HZ] (A) (32)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)

Dr. Ulrich Kilian (responsible)
Christine Weber

Priv.-Doz. Dr. Dieter Hoffmann, Berlin

The author's abbreviation is in square brackets, the number in round brackets is the subject area number, a list of subject areas can be found in the foreword.

Markus Aspelmeyer, Munich [MA1] (A) (20)
Dr. Katja Bammel, Cagliari, I [KB2] (A) (13)
Doz. Hans-Georg Bartel, Berlin [HGB] (A) (02)
Steffen Bauer, Karlsruhe [SB2] (A) (20, 22)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Frankfurt [HB1] (A, B) (29)
Dr. Werner Biberacher, Garching [WB] (B) (20)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Prof. Dr. Helmut Bokemeyer, Darmstadt [HB2] (A, B) (18)
Dr. Ulf Borgeest, Hamburg [UB2] (A) (Essay Quasars)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Jochen Büttner, Berlin [JB] (A) (02)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Karl Eberl, Stuttgart [KE] (A) (Essay Molecular Beam Epitaxy)
Dr. Dietrich Einzel, Garching [DE] (A) (20)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Vienna [FE] (A) (27)
Dr. Roger Erb, Kassel [RE1] (A) (33 essay Optical phenomena in the atmosphere)
Dr. Christian Eurich, Bremen [CE] (A) (Essay Neural Networks)
Dr. Angelika Fallert-Müller, Groß-Zimmer [AFM] (A) (16, 26)
Stephan Fichtner, Heidelberg [SF] (A) (31)
Dr. Thomas Filk, Freiburg [TF3] (A) (10, 15 essay percolation theory)
Natalie Fischer, Walldorf [NF] (A) (32)
Dr. Harald Fuchs, Münster [HF] (A) (Essay Scanning Probe Microscopy)
Dr. Thomas Fuhrmann, Mannheim [TF1] (A) (14)
Christian Fulda, Hanover [CF] (A) (07)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Michael Gerding, Kühlungsborn [MG2] (A) (13)
Prof. Dr. Gerd Graßhoff, Bern [GG] (A) (02)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Weinheim [UG] (A) (13)
Prof. Dr. Michael Grodzicki, Salzburg [MG1] (B) (01, 16)
Gunther Hadwich, Munich [GH] (A) (20)
Dr. Andreas Heilmann, Halle [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Christoph Heinze, Hamburg [CH3] (A) (29)
Dr. Marc Hemberger, Heidelberg [MH2] (A) (19)
Florian Herold, Munich [FH] (A) (20)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Priv.-Doz. Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Dr. Georg Hoffmann, Gif-sur-Yvette, FR [GH1] (A) (29)
Dr. Gert Jacobi, Hamburg [GJ] (B) (09)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Dr. Catherine Journet, Stuttgart [CJ] (A) (Essay nanotubes)
Prof. Dr. Josef Kallrath, Ludwigshafen, [JK] (A) (04 Essay Numerical Methods in Physics)
Priv.-Doz. Dr. Claus Kiefer, Freiburg [CK] (A) (14, 15 Essay Quantum Gravity)
Richard Kilian, Wiesbaden [RK3] (22)
Dr. Ulrich Kilian, Heidelberg [UK] (A) (19)
Dr. Uwe Klemradt, Munich [UK1] (A) (20, essay phase transitions and critical phenomena)
Dr. Achim Knoll, Karlsruhe [AK1] (A) (20)
Dr. Alexei Kojevnikov, College Park, USA [AK3] (A) (02)
Dr. Berndt Koslowski, Ulm [BK] (A) (Essay Surface and Interface Physics)
Dr. Bernd Krause, Munich [BK1] (A) (19)
Dr. Jens Kreisel, Grenoble [JK2] (A) (20)
Dr. Gero Kube, Mainz [GK] (A) (18)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Volker Lauff, Magdeburg [VL] (A) (04)
Priv.-Doz. Dr. Axel Lorke, Munich [AL] (A) (20)
Dr. Andreas Markwitz, Lower Hutt, NZ [AM1] (A) (21)
Holger Mathiszik, Celle [HM3] (A) (29)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Prof. Dr. Karl von Meyenn, Munich [KVM] (A) (02)
Dr. Rudi Michalak, Augsburg [RM1] (A) (23)
Helmut Milde, Dresden [HM1] (A) (09)
Günter Milde, Dresden [GM1] (A) (12)
Marita Milde, Dresden [MM2] (A) (12)
Dr. Andreas Müller, Kiel [AM2] (A) (33)
Dr. Nikolaus Nestle, Leipzig [NN] (A, B) (05, 20 essays molecular beam epitaxy, surface and interface physics and scanning probe microscopy)
Dr. Thomas Otto, Geneva [TO] (A) (06)
Dr. Ulrich Parlitz, Göttingen [UP1] (A) (11)
Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Dr. Oliver Probst, Monterrey, Mexico [OP] (A) (30)
Dr. Roland Andreas Puntigam, Munich [RAP] (A) (14)
Dr. Andrea Quintel, Stuttgart [AQ] (A) (Essay nanotubes)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Dr. Max Rauner, Weinheim [MR3] (A) (15 Essay Quantum Informatics)
Robert Raussendorf, Munich [RR1] (A) (19)
Ingrid Reiser, Manhattan, USA [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Dr. Peter Oliver Roll, Ingelheim [OR1] (A, B) (15 essay quantum mechanics and its interpretations)
Prof. Dr. Siegmar Roth, Stuttgart [SR] (A) (Essay nanotubes)
Hans-Jörg Rutsch, Walldorf [HJR] (A) (29)
Dr. Margit Sarstedt, Leuven, B [MS2] (A) (25)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Matthias Schemmel, Berlin [MS4] (A) (02)
Michael Schmid, Stuttgart [MS5] (A) (Essay nanotubes)
Dr. Martin Schön, Constance [MS] (A) (14)
Jörg Schuler, Taunusstein [JS1] (A) (06, 08)
Dr. Joachim Schüller, Dossenheim [JS2] (A) (10)
Richard Schwalbach, Mainz [RS2] (A) (17)
Prof. Dr. Paul Steinhardt, Princeton, USA [PS] (A) (Essay quasicrystals and quasi-unit cells)
Prof. Dr. Klaus Stierstadt, Munich [KS] (B)
Dr. Siegmund Stintzing, Munich [SS1] (A) (22)
Cornelius Suchy, Brussels [CS2] (A) (20)
Dr. Volker Theileis, Munich [VT] (A) (20)
Prof. Dr. Gerald 't Hooft, Utrecht, NL [GT2] (A) (essay renormalization)
Dr. Annette Vogt, Berlin [AV] (A) (02)
Dr. Thomas Volkmann, Cologne [TV] (A) (20)
Rolf vom Stein, Cologne [RVS] (A) (29)
Patrick Voss-de Haan, Mainz [PVDH] (A) (17)
Dr. Thomas Wagner, Heidelberg [TW2] (A) (29)
Dr. Hildegard Wasmuth-Fries, Ludwigshafen [HWF] (A) (26)
Manfred Weber, Frankfurt [MW1] (A) (28)
Priv.-Doz. Dr. Burghard Weiss, Lübeck [BW2] (A) (02)
Prof. Dr. Klaus Winter, Berlin [KW] (A) (essay neutrino physics)
Dr. Achim Wixforth, Munich [AW1] (A) (20)
Dr. Steffen Wolf, Berkeley, USA [SW] (A) (16)
Priv.-Doz. Dr. Jochen Wosnitza, Karlsruhe [JW] (A) (23 essay organic superconductors)
Priv.-Doz. Dr. Jörg Zegenhagen, Stuttgart [JZ3] (A) (21 essay surface reconstructions)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)
Dr. Werner Zwerger, Munich [WZ] (A) (20)

Dr. Ulrich Kilian (responsible)
Christine Weber

Priv.-Doz. Dr. Dieter Hoffmann, Berlin

The author's abbreviation is in square brackets, the number in round brackets is the subject area number, a list of subject areas can be found in the foreword.

Prof. Dr. Klaus Andres, Garching [KA] (A) (10)
Markus Aspelmeyer, Munich [MA1] (A) (20)
Dr. Katja Bammel, Cagliari, I [KB2] (A) (13)
Doz. Hans-Georg Bartel, Berlin [HGB] (A) (02)
Steffen Bauer, Karlsruhe [SB2] (A) (20, 22)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Frankfurt [HB1] (A, B) (29 Essay Seismology)
Dr. Werner Biberacher, Garching [WB] (B) (20)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Prof. Dr. Helmut Bokemeyer, Darmstadt [HB2] (A, B) (18)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Jochen Büttner, Berlin [JB] (A) (02)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Prof. Dr. Martin Dressel, Stuttgart (A) (essay spin density waves)
Dr. Michael Eckert, Munich [ME] (A) (02)
Dr. Dietrich Einzel, Garching (A) (essay superconductivity and superfluidity)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Vienna [FE] (A) (27)
Dr. Roger Erb, Kassel [RE1] (A) (33)
Dr. Angelika Fallert-Müller, Groß-Zimmer [AFM] (A) (16, 26)
Stephan Fichtner, Heidelberg [SF] (A) (31)
Dr. Thomas Filk, Freiburg [TF3] (A) (10, 15)
Natalie Fischer, Walldorf [NF] (A) (32)
Dr. Thomas Fuhrmann, Mannheim [TF1] (A) (14)
Christian Fulda, Hanover [CF] (A) (07)
Frank Gabler, Frankfurt [FG1] (A) (22)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Prof. Dr. Henning Genz, Karlsruhe [HG2] (A) (Essays Symmetry and Vacuum)
Dr. Michael Gerding, Potsdam [MG2] (A) (13)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Weinheim [UG] (A) (13)
Gunther Hadwich, Munich [GH] (A) (20)
Dr. Andreas Heilmann, Halle [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Marc Hemberger, Heidelberg [MH2] (A) (19)
Dr. Sascha Hilgenfeldt, Cambridge, USA (A) (essay sonoluminescence)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Priv.-Doz. Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Dr. Gert Jacobi, Hamburg [GJ] (B) (09)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Prof. Dr. Josef Kallrath, Ludwigshafen [JK] (A) (04)
Priv.-Doz. Dr. Claus Kiefer, Freiburg [CK] (A) (14, 15)
Richard Kilian, Wiesbaden [RK3] (22)
Dr. Ulrich Kilian, Heidelberg [UK] (A) (19)
Thomas Kluge, Jülich [TK] (A) (20)
Dr. Achim Knoll, Karlsruhe [AK1] (A) (20)
Dr. Alexei Kojevnikov, College Park, USA [AK3] (A) (02)
Dr. Bernd Krause, Munich [BK1] (A) (19)
Dr. Gero Kube, Mainz [GK] (A) (18)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Volker Lauff, Magdeburg [VL] (A) (04)
Dr. Anton Lerf, Garching [AL1] (A) (23)
Dr. Detlef Lohse, Twente, NL (A) (essay sonoluminescence)
Priv.-Doz. Dr. Axel Lorke, Munich [AL] (A) (20)
Prof. Dr. Jan Louis, Halle (A) (essay string theory)
Dr. Andreas Markwitz, Lower Hutt, NZ [AM1] (A) (21)
Holger Mathiszik, Celle [HM3] (A) (29)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Dr. Rudi Michalak, Dresden [RM1] (A) (23 essay low temperature physics)
Günter Milde, Dresden [GM1] (A) (12)
Helmut Milde, Dresden [HM1] (A) (09)
Marita Milde, Dresden [MM2] (A) (12)
Prof. Dr. Andreas Müller, Trier [AM2] (A) (33)
Prof. Dr. Karl Otto Münnich, Heidelberg (A) (Essay Environmental Physics)
Dr. Nikolaus Nestle, Leipzig [NN] (A, B) (05, 20)
Dr. Thomas Otto, Geneva [TO] (A) (06)
Priv.-Doz. Dr. Ulrich Parlitz, Göttingen [UP1] (A) (11)
Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Dr. Oliver Probst, Monterrey, Mexico [OP] (A) (30)
Dr. Roland Andreas Puntigam, Munich [RAP] (A) (14)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Dr. Max Rauner, Weinheim [MR3] (A) (15)
Robert Raussendorf, Munich [RR1] (A) (19)
Ingrid Reiser, Manhattan, USA [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Dr. Peter Oliver Roll, Ingelheim [OR1] (A, B) (15)
Hans-Jörg Rutsch, Walldorf [HJR] (A) (29)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Matthias Schemmel, Berlin [MS4] (A) (02)
Prof. Dr. Erhard Scholz, Wuppertal [ES] (A) (02)
Dr. Martin Schön, Konstanz [MS] (A) (14 essay special theory of relativity)
Dr. Erwin Schuberth, Garching [ES4] (A) (23)
Jörg Schuler, Taunusstein [JS1] (A) (06, 08)
Dr. Joachim Schüller, Dossenheim [JS2] (A) (10)
Richard Schwalbach, Mainz [RS2] (A) (17)
Prof. Dr. Klaus Stierstadt, Munich [KS] (B)
Dr. Siegmund Stintzing, Munich [SS1] (A) (22)
Dr. Berthold Suchan, Giessen [BS] (A) (Essay Philosophy of Science)
Cornelius Suchy, Brussels [CS2] (A) (20)
Dr. Volker Theileis, Munich [VT] (A) (20)
Prof. Dr. Stefan Theisen, Munich (A) (essay string theory)
Dr. Annette Vogt, Berlin [AV] (A) (02)
Dr. Thomas Volkmann, Cologne [TV] (A) (20)
Rolf vom Stein, Cologne [RVS] (A) (29)
Dr. Patrick Voss-de Haan, Mainz [PVDH] (A) (17)
Dr. Thomas Wagner, Heidelberg [TW2] (A) (29)
Manfred Weber, Frankfurt [MW1] (A) (28)
Dr. Martin Werner, Hamburg [MW] (A) (29)
Dr. Achim Wixforth, Munich [AW1] (A) (20)
Dr. Steffen Wolf, Berkeley, USA [SW] (A) (16)
Dr. Stefan L. Wolff, Munich [SW1] (A) (02)
Priv.-Doz. Dr. Jochen Wosnitza, Karlsruhe [JW] (A) (23)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)
Dr. Werner Zwerger, Munich [WZ] (A) (20)

Articles on the topic

Load.

Influence machine according to Wimshurst

We only supply companies, institutions and educational facilities. No sales to private individuals.

Please note: To comply with EU regulation 1272/2008 CLP, PHYWE does not sell any chemicals to the general public. We only accept orders from resellers, professional users and research, study and educational institutions.

  • We offer you to save your personal data in a password-protected customer account so that you do not have to enter your name and address again the next time you shop.
  • Your address data will be saved by registering.
  • You can delete your customer account at any time by contacting the operator of this page.
  • The next time you visit, all you need to call up your personal data is your e-mail and your password.


Video: MIT Physics Demo -- The Wimshurst Machine (August 2022).